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SUMMARY 

The paper presents two- and three-dimensional computations of the in-cylinder turbulent flow in a diesel 
engine. The mathematical formulation is presented first, with emphasis on the modifications made to the 
standard k--E model of turbulence, to account for rapid compression/expansion, and on the k-w model also 
used in the computations. Then, the results of two- and three-dimensional transient calculations are presented 
and compared with experimental data. It is realized that two-dimensional computations may be of little value 
to real engines, which would probably require three-dimensional analyses. However, two-dimensional 
studies are still useful in allowing the testing of new ideas easily and economically. It is concluded that the 
standard k--E model may lead to poor predictions when used for internal combustion (IC) engine simulations, 
and that the modified model leads to more reasonable length-scale distributions, and it improves significantly 
the overall agreement of velocity predictions with experiment. The effect of the k--E modification is apparent 
in both the two- and three-dimensional simulations. It is also demonstrated that the k-w model provides 
better turbulence predictions than the unmodified k--E model, for the cases considered, and that a similar 
modification of the k-w model, to account for rapid compressionlexpansion, might improve its predictions 
even further. 

KEY wontx Turbulence Rapid CompressioniExpansion Bowl-in-piston T D C  BDC Inclined Walls 
PHOENICS 

INTRODUCTION 

The most widely used model of turbulence in IC engine research is the k--E model. There is no 
particularly strong reason for this choice apart from that the k--E model has traditionally become 
the most commonly used model for the calculation of complex flows, because of its success in 
predicting some incompressible flow situations. Indeed, other models, such as the modified k-w 
model,’.’ apart from being more physically comprehensible than the k--E, might also provide a 
better alternative for IC engines, where diffusion and source effects can be predominant. 

It has been pointed out by Reynolds3 that the k-& model does not represent correctly the 
behaviour of homogeneous turbulence in the special case of ‘rapid’ spherical compression; he 
suggested that the &-equation should be modified, in order to represent this special case correctly. 

Morel and Mansour4 commented that the types of compression inside engine cylinders are not, 

027 1 -209 1/87/090927-26$13.00 
0 1987 by John Wiley & Sons, Ltd. 

Received March 1986 
Revised November 1986 



928 P. SHAH A N D  N. C. MARKATOS 

in general, spherical; for example, piston motion generates axial compression. They modified the 
original analysis of Reynolds and extended it to more general types of compression. 

They produced sample calculations inside a piston-engine geometry with an 8: 1 compression 
ratio and demonstrated that whereas the standard k--E model led to length scales up to several 
times larger than the cylinder clearance height, the modified version predicted a physically more 
plausible behaviour. 

The present work applies a similar modification to a diesel engine with an off-set bowl, for which 
experimental measurements exist; and it investigates the effect of the values of the new constants in 
the modified k--E model on the predictions. Furthermore, the k-w model of turbulence is also 
applied and its predictions are compared with those of the k--E models. Two types of simulation 
were performed: fully three dimensional (off-set bowl) and ‘two dimensional with swirl’ (i.e. 
axisymmetric bowl). It is the authors’ opinion that in the transient situations considered, the 
definition of the above models is doubtful, even when ‘ensemble’ averages are concerned. It is 
also their opinion that pressure-density interactions may be more important than turbulence. 
However, exercises of the present kind are still useful for the designer, if predictions can be made 
that match experiment. 

THE MATHEMATICAL FORMULATION 

The starting point of the analysis is the set of time-dependent partial-differential, source-balance 
equations that express the conservation of mass, momentum, energy and other conserved fluid 
variables in recirculating transient flows. 

The dependent and independent variables 

The independent variables of the problem are the three components of a cylindrical polar co- 
ordinate system ( z ,  r, 0) and the time t. The dependent variables (ensemble time-averaged values) 
are the three velocity components w, v and u in the z ,  r and 0 directions, respectively, the pressure, 
p and two characteristics of turbulence, namely the turbulence kinetic energy, k,  and either its 
dissipation rate, E, or the mean-square of vorticity fluctuations, w. 

The differential equations 

general form: 
The equations for all variables above (4 ,  say), with the exception of pressure, take the following 

+ div [(pv4 - I-, grad 4)]  = S, , 
at 

where, p, v, r, and S, are the density, velocity vector, ‘effective exchange coefficient of 4’, and source 
rate per unit volume, respectively. 

The sources and exchange coefficients for the variables considered are already well documented 
in the l i t e r a t ~ r e ~ - ~  and are not repeated here. 

It is worth noting, however, that the velocity variable associated with the angular direction is the 
angular momentum, (ur) where r is the local radius. The reasons for using (ur) rather than the linear 
momentum u are that (a) in the equation for (ur) the Coriolis force does not make an explicit 
appearance, and (b) in the case of a fluid executing solid-body rotation, axial-momentum diffusion 
vanishes entirely, as it should do. 
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The pressure is associated with the continuity equation: 

a P  
a t  
-+ div(pv)=O, 

in anticipation of the so-called pressure-correction equation’ which is deduced from the finite- 
domain form of the continuity equation. 

Boundary and initial conditions 

For all walls the no-slip condition is applied for velocities, and conventional ‘wal l - fun~tions’~~’~ 
are used for the near-wall values of the dependent variables, and the calculation of shear stress. In 
general, the model provides for the use of Dirichlet, Neumann and Robin’s conditions. 

At the start of the computations, proper initial conditions must be specified for all variables, 
reflecting the state of the fluid at that stage of the engine cycle. These are provided by experimental 
measurements. 

Auxiliary relations 

expression: 
The local density, p, is calculated as function of pressure from the following polytropic 

p = 1.4839 x 1 0 - 4 p 0 ‘ 7 6 5 .  (3)  
The ‘effective exchange coefficients’ are determined from the turbulence model, to which attention 
is now turned. 

The turbulence models 

The k--E model. For three-dimensional, compressible flows Gosman and Watkins’ ’ and 
Grasso and Bracco” used the following equations: 

Dk 
D t  

p- = P - PE + diffusion, 

DE E 

Dt k 
p- = - (C,P - C,pe) + ~ E S , ,  + diffusion, 

where, as usual, C ,  = 1.44 and C ,  = 1.92. P is the production term, given by 

P = [2pl(Sij - 3Sadij)  - ?pkdij ]Si j  

where pl is the ‘turbulence viscosity’. S i j  is the strain rate of the velocity field: 

s..=- -+’ 
‘J 2 Yaui a x j  axi 

(4)  

(7) 

and S, ,  is the dilatation or velocity divergence: 

s,, = V.V. (8) 
The ~ E S , ,  term is due to convection and is obtained by deriving the &-equation from its definition. 
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This term, as well as DEIDt, is exact, whereas the remaining terms are modelled forms of higher- 
order correlations. Morel and Mansour4 have commented with reason that the form of the latter 
terms is a straightforward application of incompressible-flow models, as yet only imperfectly 
tested in compressible flows. Reynolds3 considered the k--E model for flows under rapid 
compression or expansion. He followed the reasoning of Hoult13 and proposed that in a rapid 
spherical compression the angular momentum of the turbulence should be conserved, which 
implies 

k2 /e  = constant. (9) 

( S  c,  - 3 PESII . 

Under these conditions, Reynolds showed that equation (5) should be modified by the addition 
of the term 

(10) 

Morel and Mansour4 extended Reynolds’ analysis, to include unidirectional axial compression 
and cylindrical-radial compression (squish), as well as rapid spherical compression. They 
suggested the following modified form of the E equation: 

DE E 
p~ = j$2C1p,Si jSi j  - ~ C D l p 1 D 2  - $C,,pkD) 

+ p s D  - C,ps2 /k  + diffusion, (1 1) 

which is the form used here. D stands for the dilatation and C,,, C,, depend on the mean-flow 
strain tensor S,,, as follows: 

(12) CD1 = Cl + u(C, - 1.5), 

c,, = 3 +--, 2n 3 

a = 3(St1 + S t 2  + s:3)/(lSll I + IS,,I+ I S , ~ I ) ~  - 1, 

n = 3 - J2a.  
(14) 

(1 5 )  

Morel and Mansour4 argued that C,, and C,, may be treated as ‘constants’ since they vary only 
over the moderate ranges, C,, = 3.5-4.5 and c D 2  = 1.32-1.44. The full expressions (12) to (15) as 
well as constant values were used for C,, and c D 2  in the present work. 

The k-w model. This model has been recently revised by Ilegbusi and Spalding,’ so as to 
eliminate the need to modify one of the model constants in near-wall flows. The transport 
equations are as follows: 

WP 
k 

w),  + C3- - p C , w 3 / , ,  

where 

& = CDkW1l2, 

p, = pC,k/w’I2, 

c, = G f l ,  
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f l  =[1 +C2(grad1)2], 

1 = (k/w)"2.  

In equation (17), o is the magnitude of the local time-mean vorticity vector, regardless of direction, 
e.g. 

in Cartesian tensor notation, where ei jk  is the alternating tensor. In the above equations uk and ow 
are empirical diffusion coefficients, pt is the turbulence viscosity, P is  the production rate of k, 1 is the 
turbulence length scale, and the constants are assigned the following values: 

ok = 1 .O, ow = 1 .O, Cl = 3.5, CT = 0.1 7 ,  

C2 = 17.471, C, = 1.04, C, = 0.09, C, = 1.0. (24) 

Simpler models. Instead of solving for the above parameters, Markatos14 worked out a far 
simpler approximation using a fixed eddy viscosity, corresponding to an estimated length scale and 
turbulence velocity scale. With this method, that has also been followed in Reference 15, a coarser 
finite-domain grid will suffice for quick calculations (because it decreases the need for the very 
accurate resolution of mean velocity gradients required for the k-equation solution), which means a 
substantial saving in calculation costs. The fixed eddy-viscosity may be different in the three 
momentum equations, reflecting the anisotropy brought about by swirl. 

METHOD OF SOLUTION 

In order to assess the effects of the turbulence modelling in an engine, calculations were made using 
the three-dimensional computer code PHOENICS'4.'6.'7 in both 'two-dimensional with swirl' 
and fully three-dimensional modes. The case considered is similar to the Ricardo' direct injection 
El6 single cylinder, four-stroke engine of 120.65mm bore x 139.7mm stroke, with an off-set bowl 
of 29.92mm depth (Figure 1). The compression ratio is 16:l and the engine speed considered is 24 
rev/s. Experimental measurements have been performed by Ricardo Consulting Engineers' 8,1  

using laser Doppler velocimetry (LDV). 
The program performs calculations at a series of times between IVC, which occurs at 41" ABDC, 

and EVO which occurs at 110" ATDC. Chemical reaction and heat transfer are not considered. 

120.65 

Figure 1. Modelled combustion chamber geometry (dimensions in mm) 
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Finite-domuin grid 

The solution domain is, in general, divided into three regions. These regions comprise: (a) an 
Euler grid for the cylinder-head geometry (e.g. if there is a prechamber in the cylinder head); (b) a grid 
for the space between the cylinder head and the piston crown, that expands and contracts with the 
motion of the piston and (c) a grid fixed with respect to the piston but moving with it (e.g. if there is a 
bowl in the piston). Therefore, for an engine with flat piston and cylinder head only the middle 
region (expanding/contracting) is used. For the present application (Figure l), the grid consists of a 
fixed part within the piston bowl (e.g. a part that moves by the same amount as the piston, but does 
not expand or contract, and an expanding/contracting part above the piston crown, that obeys the 
formula 

z , = z , = ~ - u ( ~  -cosbt )+c{  1 -J[l  - ( u s i n b t / ~ ) ~ ] } ,  (25) 
where a, the crank radius, is 0.06985m, b, the crankshaft speed in rad/s, is 27c times RPS, and c, the 
connecting-rod length, is 02603m. z, = 0 indicates that the z-direction grid specification must be 
for the piston at BDC, and ‘time’ is also measured from BDC. Several non-uniform grid 
arrangements were used and a typical two-dimensional grid layout is shown in Figure 2. Pistons 
and cylinder heads of any irregularity in shape can be accommodated in the present modelling, by 
use of ‘cell porosities’. In this a p p r ~ a c h , ’ ~ . ~ ’  each cell in the domain is characterized by a set of 
fractions, in the range from 0 to 1, denoting the fractions of cell-areas and volumes that are 
available for transport by convection and diffusion and for occupancy by the fluid. This method 
was followed for representing the piston bowl on the regular polar-cylindrical grid. 

Two practices were followed, i.e. the ‘zero-or-one’ practice, that leads to a step-like bowl shape 
(Figure 2), and the use of ‘partial’ porosities, between 0 and 1, that leads to a ‘smooth’ bowl shape. 
The latter practice is more accurate, but it introduces the additional difliculty of evaluating shear 
stresses at the inclined walls, as described later. 

1 

10’ 
m m  

t 

Figure 2. Finite-difference grid and ‘total’ blockage representation of bowl geometry (two dimensions) 
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The jinite-domain equation 

A finite-domain technique is used, which combines features of the methods of References 8 and 
21 and a three-dimensional-simultaneous pressure-correction algorithm. The space and time 
dimensions are discretized into finite intervals and the variables are computed at only a finite 
number of locations in four-dimensional space-time, at  the ‘grid-points’. These variables are 
connected with each other by algebraic equations, derived from their differential counterparts by 
integration over the control volumes or cells defined by the above intervals. This leads to equations 
of the form 

where the summation n is over the cells adjacent to a defined point P and includes the grid 
node P at the earlier time (the influence of the past). The coefficients A:, which 
account for convective and diffusive fluxes across the cell, are formulated, using ‘donor-cell’ 
differencing. For example, the coefficient for the high-y neighbour is 

and 

A: = ppu,a,  + (6). ;, when v, 2 0, 

where 6, is the distance between nodes P and n, a, is the area of the cell face, (p/a,), the harmonic (or 
arithmetic) mean of the values at P and n, and pp the value of density at the grid node P. The source 
term is written in the linear form S ,  = CV - C 4 ,  where C and V stand for a ‘coefficient’ and a 
‘value’. The upwind differencing and the linearization of the integrated source term enhance 
numerical stability. 

Pressures are obtained from a pressure-correction equation, which yields the pressure changes 
required to produce velocities and densities which preserve continuity.8 An important aspect of 
the computational procedure is that it employs a fully implicit formulation, by which is meant 
that, where any latitude exists at all, ‘new’ values are taken. Thus, if we consider a very simple 
problem for the sake of argument, namely that of the three-volume flow situation illustrated in 
Figure 3, the following are the equations solved: 

Continuity 

Figure 3.  The three-cell problem 
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Momentum 
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Equation of state 

where A and I/ stand for the cross-sectional area and the volume. The advantage of the above 
implicit formulation is that the time step need be no smaller than that which the requirements of 
accuracy dictate. In other words it does not suffer, like explicit schemes do, from mathematical 
time-step limits (e.g. Courant number) which are not dictated by physics but by the formulations 
themselves. Accuracy of course dictates that the physical processes simulated must be resolved 
according to their characteristic time scale. 

The solution procedure 

At each time step, the solution is obtained by sweeping through the calculation domain, solving 
successively at each slab of cells, i.e. collections of cells having the same value of the longitudinal- 
distance variable, z. The solution sequence is as follows: 

(a) Conservation equations are solved for each z-constant slab for k and E (or k and w) using a 
modified version of Stone’s solver.22 

(b) The value of the pressure field Pnew is guessed. 
(c) The values of the velocities and density (all new with respect to time intervals) are computed 

at each z-constant slab, based on this guess, from the momentum equations and the equation 
of state. The (ur)- and u-momentum equations are solved by a point-by-point Jacobi 
procedure and the w-momentum equation by a line-by-line procedure. The ‘SIMPLEST’ 
practice21 is followed for the w-equation in which the finite-domain coefficients for 
momentum equations contain only diffusion contributions, the convection terms multiplied 
by the corresponding 4s being added to the linearized source term of the equations. 

(d) From the above values the value of the left-hand side of the continuity equation is computed; 
this will not, in general, equal zero and this quantity, which represents a continuity error, is 
stored. 

(e) When the whole field has been swept, as above, the pressure-correction equation (derived by 
reference to the differential forms of the momentum equations, that determine how the left- 
hand side of the continuity equation will vary with pressure) is solved three-dimensionally by 
a three-dimensional-simultaneous procedure, which is also a modified version of Stone’s 
strongly implicit method. 

( f )  The pressure corrections are used to update the pressure, density and velocity fields. 
(g) Control is returned to step (a) and a new sweep starts; the sequence is repeated until 

convergence is attained. 
(h) The time is incremented, and the geometry updated to accommodate the motion of the 

piston. 

1 .  Computer storage: (a) the storage requirement does not increase with the number of time 
steps, and (b) only three ‘slabs’ of information need be in-core at any time. The use of disk 
storage for the remainder means that fine grids in z can be used. 

2. Computer time: despite its iterative nature within a time step, the fully implicit formulation of 

Steps (a) to (d) are repeated slab-by-slab to the completion of a sweep. 

Important aspects of the above solution sequence are 
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the finite-domain equations and the solution procedure permit large time steps to be taken. 
The efficiency of the solution procedure is also indicated by reference to the simple three- 
volume flow situation of Figure 3, for which the pressure correction equation is derived by 
differentiation of equation (28) as follows: 

wherein E represents the excess of inflow over outflow in unit time at stage (d) of the 
procedure. Equation (32) takes account of the variations with the centre-cell pressure, P,, of 
the west- and east-face velocities and of the centre-cell density; no account being taken of the 
variations of the ps which multiply the velocities. 

In early schemes, the very important terms du/dPp were neglected, so that the pressure 
correction relied solely on the time step 6t being small enough and dp,/dPp being finite. The 
first condition entailed needless expense and the latter precluded the computation of 
incompressible flows (unless an artificial compressibility was introduced). 

Boundary conditions 

For all walls the no-slip condition is applied for velocities, and conventional ‘wall functions’ for 
the near-wall values of the dependent variables, and the calculation of shear stress, to which 
attention is now turned. 

At the inclined walls, the following formulae were developed to  model the wall-friction forces 
acting on each of the velocity components: 

where p,Q and A, are density, total velocity vector and area of the wall, respectively. These 
formulae are based on the idea of resolving the resultant velocity of u, u and w parallel and normal 
to the inclined wall, finding the total friction force parallel to the inclined wall and then resolving 
it back into co-ordinates x,y and z. The friction factor, f, was taken to be 0.003, a typical value 
for high Reynolds turbulent If a particular velocity component produced no shear, then 
Q for that component was set to zero. Furthermore, the following approximations were adopted: 

(a) It was assumed that Q, = w, Q, = u and Q, = u. 
(b) If a particular velocity component was blocked, but referred to a cell which was partially 

blocked, the corresponding shear force was considered to act on the adjacent velocity 
component away from the blockage. 

The boundary conditions for the turbulence kinetic energy and its dissipation rate were specified 
by way of wall functions; namely, the near-wall values were set to 

1 7 2  . LJ. 

u: 
K6 ’ E = -  (37) 

where U ,  is the friction velocity, 6 is the normal distance of the grid node next to the wall, K is Von 
Karman’s constant, taken as 0.413, and C, = 0.09. 
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The near-wall value for w was derived from equation (37) above using the relation between E and 
w, as follows: 

It is recognized that even the above formulae (33)-(35), although more refined for inclined walls 
than the usual ones, cannot be sufficiently accurate. Furthermore, no provision has been made for 
small eddies that may appear at the corners. The use of a body-fitted inside the bowl is the 
recommended alternative for future work, that will ensure accurate representation of the bowl and 
its shear stresses, and will avoid the corner-eddies problem. 

Initial conditions 

For the case considered in this work and described above, the following initial conditions are 
specified at IVC: 

The air is taken to be in solid-body rotation, at a rate equal to 2.7 times the rate of rotation of 
the engine shaft; this appears to be similar to that measured in the E l6  engine, for a speed of 
24 rev/s. 
Pressure is set to 1.16 x lo5 N/m2. 
The turbulence was taken to be uniform throughout the cylinder. A datum turbulence was 
derived from the Ricardo steady flow rig,18 corresponding to a rig level of 0055 (non- 
dimensional), and the RMS turbulence velocity was thus taken to scale linearly with engine 
speed. k was then obtained from the formula k = (0.25 RPS/0.816)' = 54.2 m2/s2, e.g. the 
RMS turbulence was taken as one quarter of the engine speed in r/s. (Note that the RMS 
turbulence velocity is J(2k/3) and that the above prescription corresponds to k/u2 = 0.80, 
where u is the mean piston speed. The above value is in general agreement with measurements 
not only in the present engine but in others as 
The length scale was estimated to be 0.014m.19 This is in accordance with the expectation 
that in an engine the length-scale of turbulence at BDC is of the order of 0 1  times the distance 
from the piston face to the cylinder head. This leads to the following initial value of E:  

E = Ck/3k312/l = 0.164 x (54.2)3'20.014 = 4683m2/s3. 

It is recognized that the initial conditions constitutive a source of major uncertainty. There 
are experiments that show at intake the presence of large-scale eddies, non-uniform axial and 
radial velocities and non-uniform turbulence fields. It has also been shown26 that soon after 
IVC, the flow srtructure generated during intake has collapsed inside both the cylinder and 
the piston bowl. More experiments on particular engines are required to provide initial 
conditions necessary for calculation methods. Even then, however, the inevitable cycle-to 
cycle variations may still confuse the issue. 

COMPUTATIONAL DETAILS 

Transience 

The total time interval, which corresponds to a crank advance of 250", is subdivided into a 
number of time steps. Several time-step studies were performed.' A typical time subdivision 
consists of 65 steps distributed as follows: 10 steps each of 10"; 4 steps of 5", 40 steps of 1"; 4 steps of 
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Table I. Computational details 

Test No. of sweeps/ Grid size CPU time/lO 
case time step time steps 

2D(y - Z )  40 16 x 16 20 min 
3D 50 12 x 16 x 16 5 h  

5" and 7 steps of 10". The reduction of time-step interval around TDC is necessary to resolve the 
rapidly changing flow patterns experienced there: it also promotes convergence. 

Grid-and time-step-independency studies 

These studies were mainly carried out on two-dimensional cases' to obtain an optimal grid-size, 
time step and number of sweeps per time step, which sensibly balance accuracy against CPU time. 
The grids used were 11 x 11,16 x 16,16 x 22,22 x 22 and 30 x 30 and each one was used for 
65,130 and 260 time steps, for the full transient. Further runs were performed by using the same 
number of grid nodes, but varying their distribution. 

For the two-dimensional cases, the results obtained can be considered as practically grid- 
independent for grids of 22 x 22, and time-step-independent for 130 time steps, distributed as 
follows: 48 steps each of 2.3333", 60 steps of0.9" and 22 steps of 3.81 8 1 '. The differences between the 
grid-independent results and the ones obtained using the 16 x 16 grid were not considered 
significant; thus, all subsequent studies employed the latter grid, distributed as shown in Figure 2. 
It may seem surprising that a 22 x 22 grid yields virtually grid-independent results, but this may 
simply be a consequence of assuming zero axial and radial velocities at IVC. 

For the three-dimensional cases, at present only two different grid sizes, e.g. 12 x 11 x 11 and 
12 x 16 x 16 (with 65 and 130 time steps), have been investigated, and therefore the results 
obtained cannot be claimed as yet to be fully grid-independent. 

Computer requirements 

Monotonic convergence was obtained for all cases studied. Forty to seventy solution sweeps of 
the domain were required per time step to ensure convergence: this number increases as the piston 
moves towards TDC. It should be mentioned that convergence rate deteriorates near TDC, 
because the finite-difference cells have very large aspect ratios. In future work an adaptive grid will 
be used to eliminate this difficulty. 

A run with 16 x 16 grid and 130 time steps required 4 hours of CPU time to execute on a PRIME 
750 mini-computer. The program for this run required 260 kilobytes of storage, of which 30 
kilobytes were for the storage of variables, with the remainder taken by the program object 
code. Details of convergence and computer time (on the Prime 750) are given in Table I. 

RESULTS AND DISCUSSION 

Owing to space restrictions only some of the results are presented. They refer to points within the 
piston bowl, at  locations where experimental measurements were taken, as shown in Figure 4. 

The swirl velocity is plotted at depth (3), i.e. 24.32mm below the piston crown, and RMS 
turbulence velocity at depths (l), (2) and (3), i.e. 6.4, 12.7 and 24.32mm. Results for the 
three-dimensional work were examined in the two radial planes shown in Figure 4 at 8 = 195" 
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31.6 

c 

I 

Figure 4. Measurement positions (in mm) 

and 8 =  345". The plane in the 8 =  345" direction ( I X =  12) corresponds to the plane of the 
Ricardo LDV measurements. The swirl velocity results are given at seven crank positions: 
27" BTDC, 18" BTDC, 9"BTDC, TDC, 9" ATDC, 18" ATDC and 27" ATDC, represented as 
1, 2, 3, 4, 5, 6, 7 ,  respectively on the Figures. Turbulence kinetic energy results are shown at 
TDC, and 1, 2, 3 on the Figures represent the three bowl depth positions, respectively. The 
Ricardo measurements are summarized in Figure 5. 

Modifications to the turbulence model 

The effects of the modifications to the turbulence model are demonstrated in Figures 7 to 14. The 
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'SlChlOo TLPBUENCE DATA AT TDC' 

Figure 5. Variation ofswirl velocity with bowl radius and crank angle, and turbulence variation with bowl radius at TDC: 
Ricardo measurements 

Figure 6. Swirl velocity and turbulence velocity predicted by the 'standard' k--E model and 'partial porosities' bowl 
representation (two dimensions) 
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‘rx) K-E + PP Y I T H  SS KELPOR’ “ICCl K - t  i PP Y I T H  SS TDC KELPDR’ 

Figure 7. Swirl velocity and turbulence velocity predicted by the ‘modified‘ k--E model and ‘partial porosities’ bowl 
representation (two demensions) 

swirl velocity and RMS turbulence velocity ( = 0.8 16Jk) have been non-dimensionalized by 
dividing by the mean piston speed (MPS = 8.1936 m/s). 

Two-dimensional results. Figures 6 and 7 present the results obtained with the ‘standard’ and 
‘modified’ k - E  models, respectively, with partial porosities representing a ‘smooth’ bowl shape. 
Comparison of Figures 5-7 reveals that the turbulence-model modification has a very strong effect 
on the predictions of both velocity and turbulence levels. The standard k--E model leads to a 
significant underprediction of swirl around TDC, and to the curves being very close together after 
TDC. The modified k--E model improves the agreement between predictions and experiments for 
swirl to within 15 per cent, but underpredicts the turbulence velocity by up to 70 per cent. The 
measurements using a plain directed port for turbulence show that the squish flow and breakway 
from the bowl lip has a significant effect in giving a local increase in measured turbulence; no special 
provision for turbulence enhancement at  the lip has been made here and hence may account for this 
underprediction of turbulence. The good agreement of the two-dimensional swirl predictions with 
the measurements (that correspond to the &plane having the smallest land squish area), appears to 
indicate that there is no large circumferential swirl variation in the bowl. It should be noted also that 
the underprediction of turbulence is amplified by the ‘improvement’ of the bowl representation 
with shear stress calculations (step-like representation of the bowl underpredicted turbulence by up 
to 40 per cent). Inspection of the results obtained reveals that at  the depth of 24.32 mm the flow is 
close to a solid body rotation in the bowl, with no evidence of a free vortex developing, though the 
effect of bowl wall in reducing the velocity at some crank angles is apparent. The velocities peaked, 
depending on radius, at TDC or 9” ATDC, in agreement with experiments. In the middle and at  the 
top of the bowl, swirl velocities peaked near the outside of the bowl, and the peaks were about 20 
per cent higher in magnitude than at the bottom of the bowl. Finally, it is interesting to mention 
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Figure 8. Swirl velocity and turbulence velocity, predicted by the 'standard' k--E model (three dimensions, 0 = 195") 

that, in this particular case, the standard k--E model performs relatively better than the compressible 
version Reference 11, with respect to the measurements in the bowl. 

Three-dimensional results. The effects of the modifications to the turbulence model are 
demonstrated in Figures 8-1 1 ,  at 0 = 345" and 195", to show the variation of results with angular 
position in the bowl. Here a step-like representation of the piston-bowl has been used. Comparison 
of these Figures with experiments again shows that the turbulence-model modification has a very 
strong effect on the predictions of both velocities and turbulence levels. As for the two-dimensional 
results, the modified k--E model improves the agreement for swirl to within 15 per cent, but 
underpredicts the turbulence velocity by up to 70 per cent. With both the standard and modified k- 
E models there is virtually no variation of turbulence velocity with angular position, although the 
swirl predictions show some variation. It should also be noted that the magnitudes of the velocities 
are slightly lower than those predicted in the two-dimensional results and those obtained in 
Ricardo's LDV work. 

Overall comparisons of two- and three-dimensional results 

With the standard k--E model, the three-dimensional results are in better agreement with 
experiments than the two-dimensional results, particularly the turbulence predictions, as has 
already been demonstrated elsewhere. l4 

On comparing the standard three-dimensional model with the modified two-dimensional 
models (with least error), the two-dimensional results are closer to measurements for both swirl and 
turbulence predictions. However, this is expected, as no extensive grid-and-time step independency 
studies have been performed for the three-dimensional cases. This suggests that the k--E model 
needs to be modified as in the two-dimensional case. 



942 P. SHAH AND N. C. MARKATOS 

L 

3 

e 
$ 2  

F! 
3 

1 

Figure 9. Swirl velocity and turbulence velocity, predicted by the 'standard' k-c: model (three dimensions, 0 = 345') 
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Figure 10. Swirl velocity and turbulence velocity, predicted by the 'modified' k-t; model (three dimensions, 0 = 195") 
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Figure 11. Swirl velocity and turbulence velocity, predicted by the 'modified k--E model (three dimensions, 0 = 345") 

The modified three- and two-dimensional models are in very similar agreement with 
measurements, but the modified three-dimensional model does underpredict the turbulence values, 
even more than the two-dimensional. 

Figures 12(a) and (b) present the comparison of the predicted length-scale distributions in the 
bowl (level 3,24.3 mm, of Figure 4) at TDC, for both two- (Figure 12(a)) and three-dimensional 
(Figure 12(b), 8 = 345") cases. There is a very significant difference, the modified model predicting 
only about 1/5 of the length-scale of the standard model for the two- and three-dimensional cases. 
The predicted length-scale distribution is generally lower for the three-dimensional case as 
compared to the two-dimensional case, for both versions of the k--E model. 

Figures 13(a) and (b) present the variation of length-scale in the bowl, during the cycle. The 
values plotted are normalized with respect to the initial length-scale (0.014m) and refer to a 
location of 25.2mm from the centre of the piston bowl, and at a bowl depth of 12.52mm. IVC 
is at 0 and the ordinate is subdivided into 25" intervals. For the three-dimensional case (Figure 
13(b)) an angular position of 135" was used. It is worth noting that the predicted length-scale 
variation with crank angle is identical for the modified model, for both the two- and three- 
dimensional cases, although the standard version predicts a lower length-scale distribution overall 
for the three-dimensional case. In both cases an increase of length-scale from its initial value is 
observed at IVC, followed by a decrease with crank-angle. I t  reaches a minimum value at TDC, and 
then rises again. 

Figures 14(a) and (b) provide a typical pressure time-history at the same locations in the bowl as 
in Figure 12 for both the two: (Figure 14(a)) and three-dimensional (Figure 14(b), 8 = 135") cases. 
IVC is at 0 and the ordinate is subdivided in 33.3 intervals. Both versions of the k--E model predict 
very similar pressure values for both the two- and three-dimensional cases. 

Figures 15, 16 and 17 present velocity vectors for the three-dimensional case (with the modified 
k--E model) in the 8 = 15" and 8 = 195" planes. These planes were chosen so as to show the effect of 
bowl offset. The results show some degree of asymmetry due to bowl offset. 
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Figure 12. Length-scale distribution in the bowl at T D C  predicted by the 'standard'(1) and 'modified' (2) k--F. models. for 
both two- and three-dimensional (0 = 345") cases ((a) and (b), respectively) 

2 

r 
%' 

\ 
t 
\ 
\ 

Figure 13. Length-scale variation in the bowl with crank-angle, predicted by the 'standard' (1) and 'modified' (2)  k-E 
models, for both two- and three-dimensional (0 = 135") cases ((a) and (b), respectively) 
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Figure 14. Pressure variation with crank-angle, predicted by the 'standard' (1) and 'modified' (2) k--E models for both two- 
and three-dimensional (0 = 135") cases ((a) and (b), respectively) 
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Figure 15. Velocity vectors in the 15" and 195" planes (9" BTDC) in the piston bowl 

The  'new' turbulence-model constants 

The results reveal that using fixed values of C,, = 1.38 and C,, = 4.0 leads to significantly 
different predictions from those obtained using the full expressions for these 'constants', given by 
equations (12)-(15). This is particularly true in the prediction of k and less so in the prediction of 
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Figure 16. Velocity vectors in the 15" and 195" planes (TDC) in the piston bowl 

Figure 17. Velocity vectors in the 15" and 195" planes (9" ATDC)  in the piston bowl 

velocities. During the compression and expansion strokes, the variations in the 'constants' 
predicted by equations (12)-(15) were between 1.32 and 1.41 for C,, and between 3.75 and 4.499 for 
CD2. A t  TDC the values tended to concentrate around CD1 = 1.40 and C,, = 3.75. The most 
probable values overall, throughout the cycle, were C,, = 1.37 and C,, = 4.12, which are therefore 
the recommended values, if C,, and CD2 are to be treated as constants. 

The k-w model predictions 

Figure 18 presents the results obtained with the k-w model for swirl and turbulence. 
Comparison of these with the standard k--E model predictions (see Figure 6) reveals that the k-w 
model has a strong beneficial effect on the predictions of both velocity and turbulence levels. 

Table I1 shows the overall average percentage er?ors between predictions and experiments for 
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Figure 18. Swirl velocity and turbulence velocity predicted by the k-w model 

Table 11. Overall average percentage errors between predic- 
tions and experiment, using different turbulence models 

~- 

Model Swirl velocity Turbulence velocity 

Standard k--E 28% 59% 
Modified k--E 15% 47% 

k-w 18% 27% 

swirl and turbulence levels for the standard and 'modified' k-e models and for the k-w  model. 
Thus it appears that the k-w  model performs substantially better for swirl and, in particular, 

turbulence velocity predictions. It improves the agreements between predictions and experiment 
for swirl and turbulence velocity to within 18 and 27 per cent, respectively. It is not entirely clear 
why this should be so, but it may be the case that diffusion and source effects may be predominant 
in the cases studied. 

Figures 19 and 20 present the swirl velocity and turbulence velocity profiles at TDC for 
experiment, standard and 'modified' k--E models and the k-w model. The values are plotted at 
depth 3 (Figure 4), i.e. 24.32mm below the piston crown. 

Table 111 shows the average percentage error at TDC for the three models, for swirl and 
turbulence velocities. 

From Figure 19 and Table IT1 it can be seen that the swirl at TDC predicted by the modified k--E 
model is in good agreement with experiment. The k-w model improves the agreement between 
predictions and experiments for the turbulence velocity to within approximately 10 per cent 
(Figure 20), but underpredicts the swirl velocity by up to 21 per cent (Figure 19). However, it is 
worth noting here that the standard k-e model is in much worse agreement with experiment for 
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Figure 19. Swirl velocity profiles at TDC for experiment (l), 'standard' (2) and 'modified' (3) k--E models, and the k-w 
model (4) 

Figure 20. Turbulence velocity profiles at TDC for experiment (1) 'standard'(2) and 'modified'(3) k--E models, and the k-w 
model (4) 
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Table 111. Average percentage errors for the turbulence models 
used 

Model Average percentage error 
Swirl velocity Turbulence velocity 

Standard k-E  38 58 
Modified k--E 11 54 

k-w 21 10 

Figure 21. Length-scale distribution in the bowl at TDC predicted by the ‘standard’ (1) and ‘modified’ (2) k--E models, and 
the k-w model (3) 

both the swirl and turbulence velocity profiles, and that the k--E modification does not improve the 
turbulence predictions significantly. 

Figure 21 presents the comparison of the predicted length-scale distributions in the bowl (level 3, 
24.3 mm, of Figure 4) at TDC, for the standard and modified k--E models, and the k-w model. There 
is a very significant difference between the standard and modified k-E models; the modified model 
predicts only about 1/5 of the length-scale of the standard model. 

For the standard k h  model, the length-scale rises sharply after about half way along the centre of 
the piston-bowl and then gradually decreases along the piston-bowl before falling sharply again. 

The modified k--E model has a generally more gradual trend from the centre of the piston 
bowl, and the k-w model has a different trend than both the standard and modified k--E models. 
The length-scale predicted by the k-w model rises steeply from about half way along the centre 
of the piston-bowl and then drops sharply as for the standard k--E model. Figure 22 presents 
the variation of length-scale in the bowl, during the cycle. The values plotted are normalized 
with respect to the initial length-scale (0.014m) and refer to a location of 25.2mm from the 
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Figure 22. Length-scale variation in the bowl, with crank-angle predicted by the 'standard' (1) and 'modified' (2), k--f: 
models, and the k-w model (3) 

centre of the piston bowl, and at a bowl depth of 12.52mm. IVC is at 0 and the ordinate is 
subdivided in 25" intervals. For both the standard and modified k-c models an increase of 
length-scale from its initial value is observed at IVC, followed by a decrease with crank-angle. 
I t  reaches a minimum value at TDC, and then rises again. However, for the k-w model a slight 
decrease of length-scale from its initial value is observed at IVC, followed by an oscillating value 
with crank-angle. It appears to reach a minimum value at 1 1  1" ATDC. 

CONCLUSIONS 

Two- and three-dimensional computations of the in-cylinder turbulent flow in a diesel engine have 
been performed. The standard k--E model has been modified, to account for the effects of 
compression/expansion. The k-w model has also been used. The piston-bowl-shape has been 
represented using partial porosities and with the appropriate calculation of shear-stresses at the 
inclined walls. 

The results of the modified k--E model are in fair quantitative agreement with the measurements, 
for velocities, but less so for the turbulence, in the bowl for both the two- and three-dimensional 
computations. The results of the k-w model are in fair agreement with the measurements (to 
around 20 per cent) for both velocities and turbulence quantities. The remaining discrepancies may 
be attributed to 

(a) the specification of initial conditions. The initial axial and radial components of the velocities 
were taken to be zero, although that was not actually the case in the experiments. The 
turbulence scale was estimated from very limited hot-wire anemometry data 

(b) experimental errors 
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(c) representation of the bowl. 

The results of the two- and three-dimensional runs are very similar for swirl, indicating that the 
asymmetry introduced by the bowl offset is not significant. The turbulence predictions are 
comparatively lower for three-dimensional runs than for two-dimensional ones. However, final 
judgement on this finding is reserved until full grid- and time-step independency studies for the 
three-dimensional cases have been performed. The results obtained with the k-w model of 
turbulence are in much better agreement with experiment than both the k--E models, as far as 
turbulence velocity is concerned, and only 3-10 per cent worse than the modified k--E model 
in swirl predictions. 

It can be concluded that, given the above uncertainties, the predictions with the modified k - - ~  
model appear encouraging for swirl predictions for both two- and three-dimensional cases. This is 
not the case for the k-predictions, which are, however, of less direct importance to the engine 
designer, than the swirl and squish predictions. It is also suggested that the k-w model may be a 
better choice for internal combustion engine simulation, and that a similar modification to its 
standard form may improve the swirl predictions even further, as was the case with the k--E model. 
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